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LElTER TO THE EDITOR 

Experimental tests of quantum mechanics versus 
local hidden variable theories 

S M Roy and Virendra Singh 
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India 

Received 17 March 1978 

A h & .  We propose new inequalities involving polarisation correlation parameters as 
tests of local hidden variable theories versus quantum mechanics. These are derived using 
Bell’s formulation of Einstein’s locality condition. 

1. Introduction 

Einstein et a1 (1935) argued that quantum mechanics cannot be a complete theory by 
means of a discussion of measurements on two spatially separated systems S1 and S2 

which have interacted in the past. Their essential assumption is the locality condition 
of Einstein (1949): ‘The real factual situation of the system S2 is independent of what 
is done with the system S1, which is spatially separated from the former.’ From this 
locality condition, Bell (1964, 1971) and Clauser et a1 (1969) derived an important 
inequality which is the basis of Bell’. theorem that no local (deterministic or stochas- 
tic) hidden variable theory can reproduce all the experimental predictions of quantum 
mechanics. Experimental tests of quantum mechanics versus Bell’s inequality are of 
fundamental importance (Freedman and Clauser 1972, Holt 1973, Holt and Pipkin 
1974, Faraci et a1 1974, Clauser 1976, Fry and Thompson 1976, Bruno et a1 1977). 
New and refined experiments in this direction are in progress (Aspect 1975, Aspect 
and Imbert 1976). We propose new tests between quantum mechanics and theories 
obeying Einstein’s locality condition as formulated by Bell, i.e. local hidden variable 
theories. It will be clear that, as in the case of Bell’s inequality, the inequalities 
presented here can also be derived from other formulations (Clauser and Horne 1974, 
Bell 1975, Stapp 1976, d’Espagnat 1975, 1977, Eberhard 1977) of the locality 
condition. We state our results only for a system of two spin-f particles; generalisation 
to other systems is straightforward using the arguments of Clauser et a1 (1969). 

Consider a system of two spin-3 particles prepared in such a state that they move in 
different directions towards two measuring devices which measure spin components 
A (  = f 1) and B( = f 1) along directions a* and 6 respectively. Suppose that the initial 
state is described by hidden variables A with probability distribution po(A ). Bell (1971) 
characterises local hidden variable theories (deterministic or stochastic) as those in 
which the expectation values of A ,  B and AB in the state A, denoted respectively by 
A, B and AB, obey the locality conditions, 

A B ( ~ ~ , ~ , A ) = A ( ~ ~ , A ) B ( ~ , A )  (1) 
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and the obvious inequalities, 

[A($, A)]* 1 ,  [E(& A ) I 2 d  1 .  

The chief point is that A(B) does not depend on the setting 6 ( d )  of the distant 
instrument. We further assume that the probability that both particles trigger the 
measuring devices depends only on A, and denote it by f (A) .  Then, the mean value 
P ( d , 6 )  of the product AB is given by 

P(d,  6)= 1 dAp(A)A(d, A)B(6, A) ,  

where 

Obviously 

1 dAp(A)= 1 and p ( A ) > O .  (4) 

We shall obtain new consequences of this locality assumption which conflict with 
quantum mechanics and may be tested experimentally by measurement of the 
polarisation correlations ~ ( d , 6 ) .  

2. Method 

All the new inequalities to be considered here, as well as those proposed by Bell 
earlier, involve polarisation correlation parameters P(d,  6) linearly, i.e. they are of the 
form 

where Pij = P(di ,  Lj )= j  d A p ( A ) x i ( A ) y i ( A ) ,  A ( $ ,  A ) & x i ( A ) ,  B(gj, A ) =  y j ( A )  and Cij's 
are constants independent of di, 6+ We now note: (i) As the form J depends on x i @ )  
and y j ( A )  linearly its maxima and minima will clearly be achieved on the boundary. 
We then need consider only the case [ x i ( A ) I 2  = [ y j ( A ) ] *  = 1 for finding the maxima of J 
under the conditions (2). (ii) The locality conditions (2) and (4) used to derive the 
inequalities ( 5 )  are invariant under 

X i  (A ) + X I ( A )  = t ixi  (A), yi(A 1 + y l  (A 1 = qiYj(A ) 

where (ti)2 = (qj)2= 1 .  Hence for every inequality of the form (5),  the further 
inequalities obtained by replacing Pii by eiqjPij, 

must also hold. 
The results we obtain are consequences of the basic inequality asserting that the 

square of the sum of an odd number of terms, each of which can take the value + 1 or 
- 1 ,  is necessarily bounded below by 1 ,  i.e. 

[ X ~ ( A ) + X ~ ( A ) +  . . . + X n ( A ) + Y l ( A ) +  . . . + ~ , ( A ) ] ~ g l  (6)  
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if m + n  =odd for [xi@)]’= [yi(A)l2= 1. The method is to form positive linear 
combinations of the inequalities of this type with different m and n values, such that 
the combination does not contain terms of the form x i ( h ) x i ( A )  or y i (A)y j (A)  with i Zj. 
These, on multiplying by p ( A )  and integrating over A, and using (4), yield the desired 
inequalities of the type ( 5 )  and (5’) .  

In order to illustrate the above procedure let us first rederive Bell’s inequality by 
our method. We have 

[xi@ 1- yi(A - Y ~ ( A  )I2 + [xz(A )- yi(A + YZ(A )I2 3 2 
i.e. 

xl(A )Y ) + xl(A )Y ) + x 2 0  )Y ) - x 2 ( ~  >Y 2 ( ~  1 2 

& +  P I 2  + P 2 1 -  P22) 6 1. 

&I 771P11+ 51 772P12 + 5277 1 P 2 1 -  52772P22) c 1 

for [xi(A)I2 = [y i (A)I2  = 1. On multiplying by p ( A )  and integrating over A we get 

Similarly, 

for 5: = 773 = 1; these are equivalent to Bell’s inequalities. 

3. New results 

2 2  Let ti = q j  = 1, and 

Qij E 5ivJ’ij. 

Then we prove the following new inequalities: 

Qii + Q2i  + Q3i  + 0 4 1  + Q i z +  Q Z Z +  Q32-Q42+ Q13-Q23 

+ 0 2 4 -  Q34+ Q l j -  Q35 6 .  

Q 1 1 + Q 2 ~ + Q 3 1 + Q 4 1 + Q 1 ~ - Q 2 ~ + Q 1 3 - Q 3 3 + Q 1 4 - Q 4 4  

+ Q25- 0 3 5  + Qz6- 0 4 6  + Q37- Q47 6 8. 

Further, the inequalities obtained from equations (9)-(11) by the interchange Qab f* 

Qba are also valid; note that the inequalities so obtained are distinct from (9)-(11), 
because, in general di and ii are unequal and hence Qii and Qji are also unequal. 

Each of the above inequalities constitutes a large number of inequalities on the Pii 
because of the freedom of choice of the 5i and vi .  As explained in § 2 it is sufficient to 
exhibit the proofs for the case ti = 77i = 1. Combining inequalities of the form (6) with 
m + n  = 5 and m + n = 3 we obtain, 

(x1 + x 2  + x 3  - Y 1 -  Y d 2 +  ( x 4  - Y 1 +  Y 2 Y  + (x1- x2 - Y3l2 

+ (x2  - x 3  - y#+ (x3 - X l  + y# 3 5 ,  (12) 
suppressing the A dependence of the x i @ )  and yi(A). Multiplying by p ( A )  and 
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integrating over A we obtain the inequality (9). Starting from the inequality 

( X l  + X 2 + X 3 +  x 4  - Y d 2  + (x1 - x 2 -  y2)2 + (x1 - x 3  - y3)2 + (x1 - x 4  - y4)2 

+ ( x 2 - x 3 -  y5)2  + ( x 2 - x 4 -  y6)2  + ( x 3 - x 4 -  y7)2  3 7, (13) 

we obtain similarly the result (10). Starting from the inequality 

(x1 +xZ- Y 1 -  Y2- y 3 l 2 +  (x1 - x 2 -  y 4 -  y 5 -  y 6 l 2  

+ ( x 3 + x 4 +  y 1 -  y 2 -  y3)2 + ( x 3 - x 4  + y 4 - y S  -y6 )2  

+ ( x 5 + x 6 -  y1 + y 2 -  y 3 l 2  + ( x 5 - x 6 -  y 4  + y 5 -  y6)’ 

+ ( x 7 +  X 8 -  Y i - Y 2 +  Y3l2 + ( X ~ - X ~ - Y Y ~ - Y S  + y6)2 3 8, (14) 

we obtain the inequality (11). Finally, starting from the inequalities obtained from 
(12)-(14) by interchanging xi and yi we derive inequalities obtained from (9)-(11) by 
the interchange Qab ++ Ob.. Inequalities on Pij arising from inequalities of the form (6) 
with m + n > 5 will not be discussed here. 

4. Comparison with Bell’s inequalities and with quantum mechanics 

We prove by simple examples that the new inequalities (9)-(11) indeed provide 
restrictions on the Pii not implied by Bell’s inequalities (7). Suppose p 4 2  = p 2 3  = P 3 4  = 
P35 = 0, and the remaining Pii occurring in equation (9) are equal to f; then all Bell’s 
inequalities involving these Pii are obeyed, but the inequality (9) is violated. The 
choice p i + l , j + 3  = 0 for i = 1 ,3 ,5 ,7 ,  j = 1,2 ,3 ,  and the remaining P i j  occurring in 
equation (1 1) equal to f respects all Bell’s inequalities, but violates the inequality (1 1). 
The choice Pll = P21 = p 3 1 =  p 4 1 =  3, P 1 2  = P 1 3  = P 1 4  = P 2 5  = P 2 6  = P 3 7  = J, and PZ2 = 
P 3 3  = P44 = P 3 5  = p46 = P 4 7  = -f respects the relevant Bell inequalities but violates 
inequality (10). 

The new inequalities, like Bell’s inequalities, are in conflict with quantum 
mechanics. For example, if we choose si = Ti = + 1, and 6 1  = 45, 6 2  = d 4 ,  6 3  = 6 2 ,  
6 4  = S5 = ~ $ 3 ,  then equation (9) yields 

1 2 

5 

i,j=1 P ( d i ,  d j )  6 + P ( d 2 ,  Ciz) + 2P((i3, d 3 ) +  P ( d 4 , d 4 ) .  (15) 
i c j  

In the Bohm and Aharonov (1957) example of two spin-; particles produced in the 
single state, the quantum mechanical result is 

Now, choose dl,  6 2 ,  6 3  in the same plane with an angle of 2 ~ / 3  between each pair of 
vectors, and d4+ d 5  = 0; substituting the quantum mechanical result the left-hand side 
of the inequality (15) becomes :, and the right-hand side becomes 2, in clear violation 
of the inequality. Hence it would be possible to distinguish experimentally between 
quantum mechanics and the locality predictions given by equations (7), (9), (lo), and 
(1 1). 
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